Bacterial plurality as a general mechanism driving persistence in chronic infections.

نویسندگان

  • Garth D Ehrlich
  • Fen Ze Hu
  • Kai Shen
  • Paul Stoodley
  • J Christopher Post
چکیده

Classical methods for the study of bacterial pathogens have proven to be inadequate to inform with respect to chronic infections including those associated with arthroplasties. Modern methods of analysis have demonstrated that bacterial growth patterns, ecology, and intra-species heterogeneity are more complex than were envisioned by early microbiologists. Cultural methods were developed to study acute, epidemic infections, but it is now recognized that the phenotype associated with these diseases represents only a minor aspect of the bacterial life cycle, which consists of planktonic, attachment, biofilm, and dispersal phases. Over 99% of bacteria in natural populations are found in biofilms which contain multiple ecological niches and numerous phenotypes. Unfortunately, the effort to develop antibiotics has been directed solely at the planktonic minority (associated with systemic illness) which explains our inability to eradicate chronic infections. In this study we establish a new rubric, bacterial plurality, for the understanding of bacterial ecology and evolution with respect to chronic infection. The fundamental tenets of bacterial plurality are that the bacteria within an infecting population display multiple phenotypes and possess multiple genotypes. Phenotypic plurality is embodied in the biofilm paradigm and genotypic plurality is embodied in the concepts of the supra-genome and the distributed genome hypothesis. It is now clear that bacterial diversity provides bacterial populations, as a whole, the ability to persist in the face of a multi-faceted host response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron Dense Cytoplasmic Particles and Chronic Infection: a Bacterial Pleomorphy Hypothesis

I hypothesize that dormant bacterial genomes in the form of intracytoplasmic dense bodies are a mechanism for bacterial persistence, and may cause infections systematically overlooked in clinical medicine. Cell wall-defective bacteria may be involved in latent and chronic infection and may retain their pathogenicity. Persisting small, electron dense, elementary bodies derived from cell wall-def...

متن کامل

Molecular mechanism of bacterial type 1 and P pili assembly Andreas Busch , Gilles Phan and Gabriel Waksman

The formation of adhesive surface structures called pili or fimbriae (‘bacterial hair’) is an important contributor towards bacterial pathogenicity and persistence. To fight often chronic or recurrent bacterial infections such as urinary tract infections, it is necessary to understand the molecular mechanism of the nanomachines assembling such pili. Here, we focus on the so far best-known pilus...

متن کامل

Molecular mechanism of bacterial type 1 and P pili assembly.

The formation of adhesive surface structures called pili or fimbriae ('bacterial hair') is an important contributor towards bacterial pathogenicity and persistence. To fight often chronic or recurrent bacterial infections such as urinary tract infections, it is necessary to understand the molecular mechanism of the nanomachines assembling such pili. Here, we focus on the so far best-known pilus...

متن کامل

Staphylococcus aureus Regulator Sigma B is Important to Develop Chronic Infections in Hematogenous Murine Osteomyelitis Model

Staphylococcus aureus is a major pathogen causing bone infections that can become chronic and difficult to treat. Recently, we described the mechanism employed by S. aureus to switch to small colony variants (SCVs) and trigger intracellular bacterial persistence through the global stress regulator SigB. Here, we studied the role of SigB in the formation of chronic osteomyelitis. We used a murin...

متن کامل

A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence.

Biofilms play an important role in many chronic bacterial infections. Production of an extracellular mixture of sugar polymers called exopolysaccharide is characteristic and critical for biofilm formation. However, there is limited information about the mechanisms involved in the biosynthesis and modification of exopolysaccharide components and how these processes influence bacterial pathogenes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical orthopaedics and related research

دوره 437  شماره 

صفحات  -

تاریخ انتشار 2005